Robust control and Stackelberg strategy for a fourth–order parabolic equation

University of Dubrovnik

Workshop on Control of Dynamical Systems 14–16 June, 2021

Cristhian Montoya Postdoctoral researcher Department of Electrical Engineering and Computing University of Dubrovnik

HIERARCHIC CONTROL

Hierarchic control

Hierarchic control

- Concept from game theory (Gabriel Cramer 1728, Daniel Bernoulli 1738).
- What is now known as Nash equilibria is due to Cournot (1838).
- Historical papers due to J.
 Von Neumann and O.
 Morgenstern (1943) and J.
 Nash (1950).

Stackelberg strategy?

- One of the players (the leader) has some advantage that allows her to commit to a strategy.
- The other player (the follower) then chooses his best response to this.
- The leader (first player) does a movement. The follower (second player) reacts trying to win or optimize the response to the leader movement.

Hierarchic control... example [Lions94]

We consider the heat equation

$$\begin{cases}
u_t - \Delta u = \overbrace{h1_{\omega}}^{\text{leader control}} + \overbrace{v1_{\mathcal{O}}}^{\text{follower control}} & \text{in } \Omega \times (0, T), \\
u = 0 & \text{on } \partial\Omega \times (0, T), \\
u(x, 0) = u_0(x) & \text{in } \Omega.
\end{cases}$$
(PS)

Objectives:

1. Optimal control: $u \approx u_d$ in $\mathcal{O}_d \times (0, T)$

$$\min_{\mathbf{v}\in L^2(\mathbf{Q})}\frac{1}{2}\iint_{\mathcal{O}_d\times(0,T)}|u-u_d|^2d\mathbf{x}dt+\frac{\beta}{2}\iint_{\mathcal{O}\times(0,T)}|\mathbf{v}|^2d\mathbf{x}dt,\quad \beta>0.$$

2. Null controllability: find h such that u(T) = 0.

Step 1. Fix *h* and obtain

$$\min_{\mathbf{v}\in L^2(\mathbf{Q})} \quad \frac{1}{2} \iint_{\mathcal{O}_d\times(0,T)} |u-u_d|^2 dx dd + \frac{\beta}{2} \iint_{\mathcal{O}\times(0,T)} |\mathbf{v}|^2 dx dt.$$

The functional is continuous, strictly convex and coercive so there is a unique minimizer characterized by

$$v = -\frac{1}{\beta} p \chi_{\mathcal{O}}$$

$$\begin{cases} -p_t - \Delta p = (u - u_d)\chi_{\mathcal{O}_d} & \text{in } \Omega \times (0, T), \\ p(x, T) = 0 & \text{in } \Omega, \quad p = 0 & \text{on } \partial\Omega \times (0, T). \end{cases}$$
(AS)

How to solve the problem?

Step 2. Consider the coupled system:

 $\begin{cases} u_t - \Delta u = h\mathbf{1}_{\omega} - \frac{1}{\beta}p\chi_{\mathcal{O}} & \text{in } \Omega \times (0, T), \\ -p_t - \Delta p = (u - u_d)\chi_{\mathcal{O}_d} & \text{in } \Omega \times (0, T), \\ u = p = 0 & \text{on } \partial\Omega \times (0, T), \\ u(x, 0) = u_0(x), \ p(x, T) = 0, & \text{in } \Omega. \end{cases}$

(PS-AS)

How to solve the problem?

Step 2. Consider the coupled system:

 $\begin{cases} u_t - \Delta u = h \mathbf{1}_{\omega} - \frac{1}{\beta} p \chi_{\mathcal{O}} & \text{in } \Omega \times (0, T), \\ -p_t - \Delta p = (u - u_d) \chi_{\mathcal{O}_d} & \text{in } \Omega \times (0, T), \\ u = p = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x), \ p(x, T) = 0, & \text{in } \Omega. \end{cases}$

(PS-AS)

[Lions94]: system (PS-AS) is approximately controllable, i.e.,

 $\|u(T)\|_{L^2(\Omega)} \leq \varepsilon.$

How to solve the problem?

Step 2. Consider the coupled system:

 $\begin{cases} u_t - \Delta u = h \mathbf{1}_{\omega} - \frac{1}{\beta} p \chi_{\mathcal{O}} & \text{in } \Omega \times (0, T), \\ -p_t - \Delta p = (u - u_d) \chi_{\mathcal{O}_d} & \text{in } \Omega \times (0, T), \\ u = p = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x), \ p(x, T) = 0, & \text{in } \Omega. \end{cases}$

(PS-AS)

[Lions94]: system (PS-AS) is approximately controllable, i.e.,

 $\|u(T)\|_{L^2(\Omega)} \leq \varepsilon.$

 $\overset{\widetilde{\mathcal{D}}}{=}$ [Araruna et al. (2015)]: when $\omega \cap \mathcal{O}_d \neq \emptyset$ and

$$\iint_{\Omega\times(0,T)} \rho^2 |u_d|^2 d\mathsf{x} dt < +\infty \quad \text{ for } \rho \to \infty \text{ as } t \to T,$$

then (PS-AS) is NULL CONTROLLABLE.

Works related with hierarchic control

- Meat and wave equations: Lions, 1994.
- Ocean circulation models: Díaz-Lions 1997, Díaz (2002).
- Stokes system: Guillen-González et al., approximate control, 2013.
- Moving Domains (wave equation): IP de Jesus, 2014, 2015.
- Moving domains (Parabolic equations) Approximate control: Límaco, J.; Clark, H. R.; Medeiros, L. A., 2009.
- Linear and semilinear parabolic equations: Araruna, Fernández-Cara, Santos, 2015 –Control to trajectories.
- Micropolar fluids (linear case): Araruna, F. D.; de Menezes, S. D. B.; Rojas-Medar, M. A. 2014 – approximate controllability, control in both equations.
- Coupled parabolic equations: Hernández–Santamaría; DeT, Pozniak (2016).

ROBUST CONTROL

- A system is said to be robust when:
 - \bigcirc It is hardy, durable and resilient.
 - It has low sensitivities in the system passband.
 - It is stable over the range of parameter variations.
 - The performance continues to meet the specifications in the present of set of changes in the system parameters
- Robustness is the sensitivity to the effects that are not considered in the analysis and design: for example disturbance signals noise measurements

SVEUČILIŠTE U DUBROVNIKU UNIVERSITY OF DUBROVNIK

Robust control

- Two important problems that are often encountered: a <u>disturbance signal</u> is added to the control input to the system.That can account for wind gusts in airplanes, changes in ambient temperature in ovens, etc., and <u>noise</u> that is added to the sensor output.
- A differential game between an engineer seeking the <u>best control</u> which stabilizes the perturbation with limited control effort and simultaneously, nature seeking <u>maximally malevolent disturbance</u> which destabilizes the perturbation with limited disturbance magnitude.
- Optimal control problem: Find a saddle point. Minimize with respect to a control, maximize with respect to the disturbance.

STACKELBERG STRATEGY FOR ROBUST CONTROL

General framework

 $Q := \Omega \times (0, T), \ \Sigma := \partial \Omega \times (0, T), \mathcal{A}, \mathcal{N}$ appropriate operators. We consider

$$\begin{cases} y_t - Ay + Ny = h\chi_{\omega} + v\chi_{\mathcal{O}} + \psi & \text{in } Q, \\ +BC & \text{on } \Sigma, \\ y(\cdot, 0) = y_0(\cdot) & \text{in } \Omega. \end{cases}$$
(1)

h – leader control ψ – follower control ψ – perturbation. <u>Remarks:</u>

1. $h \equiv 0$ or $v \equiv 0 \Rightarrow$ robust control problem.

2. $\psi \equiv 0 \Rightarrow$ Stackelberg strategy.

3. $h, v, \psi \neq 0 \Rightarrow$ Robust Stackelberg controllability.

Our model

Domain:
$$Q=(0,1) imes(0, au)$$
 .

Kuramoto–Sivashinsky equation $y_t + y_{xxxx} + y_{xx} + yy_x = f,$ +BC, $y(\cdot, 0) = y_0(\cdot).$

- Phase turbulence in reaction diffusion systems; diffusive instabilities in a laminar flame.
- y_{xxxx}: dissipative term ; provides damping at small scales.
- y_{xx} : an instability at large scales.

UNIVERSITY OF DUBROVNIE

 yy_x: stabilizes by transferring energy between large and small scales.

Our problem: Robust Stackelberg controllability

 $Q := (0,1) \times (0, T), \ \Sigma := \{0,1\} \times (0, T), \ \omega, \mathcal{O} \subset (0,1).$ We consider the Kuramoto–Sivashinsky equation:

$$\begin{cases} y_t - y_{xxxx} + y_{xx} + yy_x = h\chi_{\omega} + v\chi_{\mathcal{O}} + \psi, & \text{in } Q, \\ y(0,t) = y(1,t) = y_x(0,t) = y_x(1,t) = 0 & \text{on } \Sigma, \\ y(\cdot,0) = y_0(\cdot) & \text{in } \Omega. \end{cases}$$
(2)

h – leader control v – follower control ψ – perturbation.

• Step 1:EXISTENCE, UNIQUENESS AND CHARACTERIZATION. Fix $h \in L^2(0, T; L^2(\omega))$. Find the saddle point for $J_r(\mathbf{v}, \psi) = \frac{1}{2} \| \mathbf{y} - \mathbf{y}_d \|_{L^2(\mathcal{O}_d \times (0, T))}^2 + \frac{\ell^2}{2} \| \mathbf{v} \chi_{\mathcal{O}} \|_{L^2(Q)}^2 - \frac{\gamma^2}{2} \| \psi \|_{L^2(Q)}^2.$

Idea of the proof

○ Step 1:EXISTENCE, UNIQUENESS AND CHARACTERIZATION. Fix $h \in L^2(0, T; L^2(\omega))$. Find the saddle point for

$$J_{r}(\mathbf{v}, \psi) = \frac{1}{2} \|y - y_{d}\|_{L^{2}(\mathcal{O}_{d} \times (0, T))}^{2} + \frac{\ell^{2}}{2} \|\mathbf{v}\chi_{\mathcal{O}}\|_{L^{2}(Q)}^{2} - \frac{\gamma^{2}}{2} \|\psi\|_{L^{2}(Q)}^{2}.$$

Idea of the proof

Step 1:EXISTENCE, UNIQUENESS AND CHARACTERIZATION. Fix $h \in L^2(0, T; L^2(\omega))$. Find the saddle point for

$$J_{r}(\mathbf{v}, \psi) = \frac{1}{2} \|y - y_{d}\|_{L^{2}(\mathcal{O}_{d} \times (0, T))}^{2} + \frac{\ell^{2}}{2} \|\mathbf{v}\chi_{\mathcal{O}}\|_{L^{2}(Q)}^{2} - \frac{\gamma^{2}}{2} \|\psi\|_{L^{2}(Q)}^{2}$$

Theorem (Convex analysis)

Let J be a functional defined on $X \times Y$, where X and Y are convex, closed, non-empty, unbounded sets. If

1. $\forall v \in X, \quad \psi \longmapsto J(v, \psi)$ is concave and upper semicontinuous. 2. $\forall \psi \in Y, \quad v \longmapsto J(v, \psi)$ is convex and lower semicontinuous. 3. $\exists v_0 \in X$ such that $\lim_{\|\psi\|_Y \to \infty} J(v_0, \psi) = -\infty$ 4. $\exists \psi_0 \in Y$ such that $\lim_{\|v\|_X \to \infty} J(v, \psi_0) = +\infty$ Then J possesses at least one saddle point $(\bar{v}, \bar{\psi})$ and $J(\bar{v}, \bar{\psi}) = \min_{v \in X} \sup_{\psi \in Y} J(v, \psi) = \max_{\psi \in Y} \inf_{v \in X} J(v, \psi).$

... Idea of the proof

γ, ℓ large enough and small data ⇒ ∀h ∈ L²(0, T; L²(ω)), ∃!
 saddle point (v, ψ) characterized by

$$ar{\mathbf{v}} = -rac{1}{\ell^2} z \chi_{\mathcal{O}}, \qquad ar{\psi} = rac{1}{\gamma^2} z,$$

$$\begin{cases} -z_t + z_{xxxx} + z_{xx} - yz_x = (y - y_d) \mathbb{1}_{\mathcal{O}_d} & \text{in } Q, \\ z(0, t) = z(1, t) = z_x(0, t) = z_x(1, t) = 0 & \text{on } \Sigma, \\ z(\cdot, T) = 0 & \text{in } (0, 1). \end{cases}$$

... Idea of the proof

○ Step 2: SHOW THE LOCAL NULL CONTROLLABILITY FOR

$$\begin{cases} y_t + y_{xxxx} + y_{xx} + yy_x = h\mathbf{1}_{\omega} + (-\ell^{-2}\mathbf{1}_{\mathcal{O}} + \gamma^{-2})z & \text{in } Q, \\ -z_t + z_{xxxx} + z_{xx} - yz_x = (y - y_d)\mathbf{1}_{\mathcal{O}_d} & \text{in } Q, \\ y(0, t) = y(1, t) = z(0, t) = z(1, t) = 0 & \text{on } \Sigma, \\ y_x(0, t) = y_x(1, t) = z_x(0, t) = z_x(1, t) = 0 & \text{on } \Sigma, \\ y(\cdot, 0) = y_0(\cdot), \ z(\cdot, T) = 0 & \text{in } (0, 1). \end{cases}$$
(3)

... Idea of the proof

○ Step 2: SHOW THE LOCAL NULL CONTROLLABILITY FOR

$$\begin{cases} y_t + y_{xxx} + y_{xx} + y_{yx} = h\mathbf{1}_{\omega} + (-\ell^{-2}\mathbf{1}_{\mathcal{O}} + \gamma^{-2})z & \text{in } Q, \\ -z_t + z_{xxxx} + z_{xx} - yz_x = (y - y_d)\mathbf{1}_{\mathcal{O}_d} & \text{in } Q, \\ y(0, t) = y(1, t) = z(0, t) = z(1, t) = 0 & \text{on } \Sigma, \\ y_x(0, t) = y_x(1, t) = z_x(0, t) = z_x(1, t) = 0 & \text{on } \Sigma, \\ y(\cdot, 0) = y_0(\cdot), \ z(\cdot, T) = 0 & \text{in } (0, 1). \end{cases}$$
(3)

Linear case: Observability (... Carleman estimates)

$$\begin{aligned} -\varphi_t + \varphi_{XXX} + \varphi_{XX} &= g_1 + \theta \mathbf{1}_{\mathcal{O}_d} & \text{in } Q, \\ \theta_t + \theta_{XXX} + \theta_{XX} &= g_2 - \ell^{-2}\varphi \mathbf{1}_{\mathcal{O}} + \gamma^{-2}\varphi & \text{in } Q, \\ \varphi(0, t) &= \varphi(1, t) = \theta(0, t) = \theta(1, t) = 0 & \text{on } \Sigma, \\ \varphi_x(0, t) &= \varphi_x(1, t) = \theta_x(0, t) = \theta_x(1, t) = 0 & \text{on } \Sigma, \\ \varphi(\cdot, T) &= \varphi_T(\cdot), \, \theta(\cdot, 0) = 0 & \text{in } (0, 1). \end{aligned}$$

Idea of the proof

Linear case: Observability (... Carleman estimates)

$$\begin{aligned} -\varphi_t + \varphi_{\text{xxx}} + \varphi_{\text{xx}} &= g_1 + \theta \mathbf{1}_{\mathcal{O}_d} & \text{in } Q, \\ \theta_t + \theta_{\text{xxxx}} + \theta_{\text{xx}} &= g_2 - \ell^{-2} \varphi \mathbf{1}_{\mathcal{O}} + \gamma^{-2} \varphi & \text{in } Q, \\ \varphi(0, t) &= \varphi(1, t) = \theta(0, t) = \theta(1, t) = 0 & \text{on } \Sigma, \\ \varphi_x(0, t) &= \varphi_x(1, t) = \theta_x(0, t) = \theta_x(1, t) = 0 & \text{on } \Sigma, \\ \varphi(\cdot, T) &= \varphi_T(\cdot), \theta(\cdot, 0) = 0 & \text{in } (0, 1). \end{aligned}$$
(5)

Observability inequality

$$egin{aligned} &\|arphi(\cdot,0)\|^2_{L^2(Q)^N}+ \int\limits_Q
ho_1(t)|arphi|^2d\mathsf{x}dt+ \int\limits_Q
ho_2(t)| heta|^2d\mathsf{x}dt\ &\leq Cigg(\iint\limits_Q
ho_3(t)(|g_1|^2+|g_2|^2)d\mathsf{x}dt+ \iint\limits_{\omega imes(0,T)}
ho_4(t)|arphi|^2d\mathsf{x}dtigg). \end{aligned}$$

 $\rho_j(t)$: Carleman weights, $j = 1, \ldots, 4$.

SVEUČILIŠTE U DUBROVNIKU UNIVERSITY OF DUBROVNIK

Theorem (L. Breton., C.M, 2021)

C

Assume that $\omega \cap \mathcal{O}_d \neq \emptyset$. $\forall T > 0$, $\omega \cap \mathcal{O} = \emptyset$, γ, ℓ are large enough and $\delta > 0$ small. $\exists \rho, \rho \rightarrow +\infty, t \rightarrow T$ such that

$$\iint_{d \times (0, T)} \rho^2 |y_d|^2 < +\infty \quad \text{and} \quad \|y_0\|_{L^2(0, 1)} \le \delta.$$

Then

```
\exists null control h & \exists! saddle point (\bar{v}, \bar{\psi}).
```


- V.HERNÁNDEZ-SANTAMARÍA, L DE TERESA, *Robust Stackelberg controllability for linear and semilinear heat equations*, Evol. Equ. Control Theory, 7(2): 247-273, 2018.

C. MONTOYA, L DE TERESA, *Robust Stackelberg controllability for the Navier–Stokes equations.* NoDEA Nonlinear Differential Equations Appli., 25(5): Art. 46, 33, 2018.

L. BRETON., C. MONTOYA, Robust Stackelberg controllability for the Kuramoto–Sivashinsky Equation. Under review. https://arxiv.org/abs/2005.13060

Numerical experiments...robust control

Numerical scheme for the Kuramoto–Sivashinsky eq: θ -scheme/Adams–Bashforth (time); \mathbb{P}_1 –FE (space):

$$\frac{u^{n+1}-u^n}{\Delta t} + \theta \mathcal{A}(w^{n+1}) + (1-\theta)\mathcal{A}(w^n) - \frac{3}{2}\mathcal{N}(u^n) + \frac{1}{2}\mathcal{N}(u^{n-1}) = f^{n+1},$$

$$w^{n+1} - u_{xx}^{n+1} = 0,$$

$$V_h = \{u \in C([-L, L]) : u|_{[x_j, x_{j+1}]} \in \mathbb{P}_1 \text{ for all } 0 \le j \le N\}$$

and its subspace

$$V_{0h} = \{ u \in V_h : u(-L) = u(L) = 0 \}$$

Errors between exact and approximate solutions

Δt	N	$L^{\infty} - \text{error}$	$L^2 - \text{error}$
1e - 01		1.32e - 02	5.54e - 06
1e-02		1.13e - 03	3.46e - 08
1e - 03	200	8.79e - 05	2.71e - 10
1e-04		5.55e - 05	5.66e - 11
1e - 05		5.46e - 05	6.58e - 11
1e-06		5.45e - 05	6.70e - 11
	25	3.31e - 03	1.86e - 06
1e-06	50	8.83e - 04	6.58e - 08
	100	2.19e - 04	2.13e - 09

Example...robust control

Disturbance signals ψ (left) and control functions v (right) on the spatial domain (-30, 30). T = 1s, N = 50, $\Delta t = 2 \times 10^{-2}$. $\ell = 40$, $\gamma = 40$ (top); $\ell = 40$, $\gamma = 400$, $\mathcal{O} = (-10, 10)$ (bottom).

UNIVERSITY OF DUBROVNIK

Example...Robust Stackelberg controllability

Robust Stackelberg controllability: T = 3s, N = 100, $\Delta t = 2 \times 10^{-2}$, $\ell = \gamma = 40$. Domains $\omega = (-3, 1)$ and $\mathcal{O} = (2, 5)$, initial datum $u_0(x) = 10^{-3} \exp(-x^2)$.

Disturbance function ψ

SVEUČILIŠTE U DUBROVNIKU UNIVERSITY OF DUBROVNIK

Open problems

- Does it occurs the null controllability when the leader control *h* is located on the boundary?
- Is it possible to consider a Nash-Stackelberg strategy instead of Stackelberg strategy?
- Is it possible to study this scheme to other models (KdV, micropolar fluids, Boussinesq system, ...)?
- Efficient numerical methods for solving robust–Stackelberg controllability problems.

Thank you

