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Hierarchic control

Hierarchic control

• Concept from game theory

(Gabriel Cramer 1728,

Daniel Bernoulli 1738).

• What is now known as Nash

equilibria is due to Cournot

(1838).

• Historical papers due to J.

Von Neumann and O.

Morgenstern (1943) and J.

Nash (1950).

Stackelberg strategy?

• One of the players (the leader) has

some advantage that allows her to

commit to a strategy.

• The other player (the follower) then

chooses his best response to this.

• The leader (first player) does a

movement. The follower (second

player) reacts trying to win or

optimize the response to the leader

movement.
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Hierarchic control. . . example [Lions94]

We consider the heat equation
ut −∆u =

leader control︷︸︸︷
h1ω +

follower control︷︸︸︷
v1O in Ω× (0,T ),

u = 0 on ∂Ω× (0,T ),

u(x , 0) = u0(x) in Ω.

(PS)

Objectives:

1. Optimal control: u ≈ ud in Od × (0,T )

min
v∈L2(Q)

1

2

∫∫
Od×(0,T )

|u−ud |2dxdt+
β

2

∫∫
O×(0,T )

|v |2dxdt, β > 0.

2. Null controllability : find h such that u(T ) = 0.
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How to solve the problem?

Step 1. Fix h and obtain

min
v∈L2(Q)

1

2

∫∫
Od×(0,T )

|u − ud |2dxdd +
β

2

∫∫
O×(0,T )

|v |2dxdt.

The functional is continuous, strictly convex and coercive so there

is a unique minimizer characterized by

v = − 1
βpχO−pt −∆p = (u − ud)χOd

in Ω× (0,T ),

p(x ,T ) = 0 in Ω, p = 0 on ∂Ω× (0,T ).
(AS)
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How to solve the problem?

Step 2. Consider the coupled system:
ut −∆u = h1ω − 1

β
pχO in Ω× (0,T ),

−pt −∆p = (u − ud )χOd
in Ω× (0,T ),

u = p = 0 on ∂Ω× (0,T ),

u(x , 0) = u0(x), p(x ,T ) = 0, in Ω.

(PS-AS)

� [Lions94]: system (PS-AS) is approximately controllable, i.e.,

‖u(T )‖L2(Ω) ≤ ε.

� [Araruna et al. (2015)]: when ω ∩ Od 6= ∅ and∫∫
Ω×(0,T )

ρ2|ud |2dxdt < +∞ for ρ→∞ as t → T ,

then (PS-AS) is null controllable.
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Works related with hierarchic control

� Heat and wave equations: Lions, 1994.

� Ocean circulation models: D́ıaz-Lions 1997, D́ıaz (2002).

� Stokes system: Guillen-González et al., approximate control, 2013.

� Moving Domains (wave equation): IP de Jesus, 2014, 2015.

� Moving domains (Parabolic equations) Approximate control: Ĺımaco,

J.; Clark, H. R.; Medeiros, L. A. , 2009.

� Linear and semilinear parabolic equations: Araruna, Fernández-Cara,

Santos, 2015 –Control to trajectories.

� Micropolar fluids (linear case): Araruna, F. D.; de Menezes, S. D. B.;

Rojas-Medar, M. A. 2014 – approximate controllability, control in

both equations.

� Coupled parabolic equations: Hernández–Santamaŕıa; DeT, Pozniak

(2016).
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Robust control

– A system is said to be robust when:

# It is hardy, durable and resilient.

# It has low sensitivities in the system passband.

# It is stable over the range of parameter variations.

# The performance continues to meet the specifications in the

present of set of changes in the system parameters

– Robustness is the sensitivity to the effects that are not

considered in the analysis and design: for example

disturbance signals

noise measurements
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Robust control

CONTROLLER

DISTURBANCE

SYSTEM

NOISE

input output
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Robust control

• Two important problems that are often encountered: a

disturbance signal is added to the control input to the

system.That can account for wind gusts in airplanes, changes

in ambient temperature in ovens, etc., and noise that is added

to the sensor output.

• A differential game between an engineer seeking the

best control which stabilizes the perturbation with limited

control effort and simultaneously, nature seeking

maximally malevolent disturbance which destabilizes the

perturbation with limited disturbance magnitude.

• Optimal control problem: Find a saddle point. Minimize with

respect to a control, maximize with respect to the disturbance.
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Stackelberg strategy
for robust control



General framework

Q := Ω× (0,T ), Σ := ∂Ω× (0,T ),A,N appropriate operators.

We consider
yt −Ay +N y = hχω + vχO + ψ in Q,

+BC on Σ,

y(·, 0) = y0(·) in Ω.

(1)

h – leader control v – follower control ψ – perturbation.

Remarks:

1. h ≡ 0 or v ≡ 0 ⇒ robust control problem.

2. ψ ≡ 0⇒ Stackelberg strategy.

3. h, v , ψ 6= 0⇒ Robust Stackelberg controllability.
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Our model

Domain: Q = (0, 1)× (0,T ).

Kuramoto–Sivashinsky equation︷ ︸︸ ︷
yt + yxxxx + yxx + yyx = f ,

+BC ,

y(·, 0) = y0(·).

• Phase turbulence in reaction diffusion

systems; diffusive instabilities in a

laminar flame.

• yxxxx : dissipative term ; provides

damping at small scales.

• yxx : an instability at large scales.

• yyx : stabilizes by

transferring energy between

large and small scales.
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Our problem: Robust Stackelberg controllability

Q := (0, 1)× (0,T ), Σ := {0, 1} × (0,T ), ω,O ⊂ (0, 1).

We consider the Kuramoto–Sivashinsky equation:
yt − yxxxx + yxx + yyx = hχω + vχO + ψ, in Q,

y(0, t) = y(1, t) = yx(0, t) = yx(1, t) = 0 on Σ,

y(·, 0) = y0(·) in Ω.

(2)

h – leader control v – follower control ψ – perturbation.

# Step 1:Existence, uniqueness and characterization.

Fix h ∈ L2(0,T ; L2(ω)). Find the saddle point for

Jr (v , ψ) =
1

2
‖y−yd‖2

L2(Od×(0,T ))+
`2

2
‖vχO‖2

L2(Q)−
γ2

2
‖ψ‖2

L2(Q).
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Idea of the proof

# Step 1:Existence, uniqueness and characterization.

Fix h ∈ L2(0,T ; L2(ω)). Find the saddle point for

Jr (v , ψ) =
1

2
‖y − yd‖2

L2(Od×(0,T ))
+
`2

2
‖vχO‖2

L2(Q)
−
γ2

2
‖ψ‖2

L2(Q)
.

Theorem (Convex analysis)
Let J be a functional defined on X × Y , where X and Y are convex, closed, non–

empty, unbounded sets. If

1. ∀v ∈ X , ψ 7−→ J(v , ψ) is concave and upper semicontinuous.

2. ∀ψ ∈ Y , v 7−→ J(v , ψ) is convex and lower semicontinuous.

3. ∃v0 ∈ X such that lim
‖ψ‖Y→∞

J(v0, ψ) = −∞

4. ∃ψ0 ∈ Y such that lim
‖v‖X→∞

J(v , ψ0) = +∞

Then J possesses at least one saddle point (v̄ , ψ̄) and

J(v̄ , ψ̄) = min
v∈X

sup
ψ∈Y

J(v , ψ) = max
ψ∈Y

inf
v∈X

J(v , ψ).
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. . . Idea of the proof

1) γ, ` large enough and small data ⇒ ∀h ∈ L2(0,T ; L2(ω)), ∃!

saddle point (v , ψ) characterized by

v̄ = − 1

`2
zχO, ψ̄ =

1

γ2
z ,


−zt + zxxxx + zxx − yzx = (y − yd)1Od

in Q,

z(0, t) = z(1, t) = zx(0, t) = zx(1, t) = 0 on Σ,

z(·,T ) = 0 in (0, 1).
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. . . Idea of the proof

# Step 2: Show the local null controllability for

yt + yxxxx + yxx + yyx = h1ω + (−`−21O + γ−2)z in Q,

−zt + zxxxx + zxx − yzx = (y − yd )1Od
in Q,

y(0, t) = y(1, t) = z(0, t) = z(1, t) = 0 on Σ,

yx (0, t) = yx (1, t) = zx (0, t) = zx (1, t) = 0 on Σ,

y(·, 0) = y0(·), z(·,T ) = 0 in (0, 1).

(3)

↓

Linear case: Observability (. . . Carleman estimates)

−ϕt + ϕxxxx + ϕxx = g1 + θ1Od
in Q,

θt + θxxxx + θxx = g2 − `−2ϕ1O + γ−2ϕ in Q,

ϕ(0, t) = ϕ(1, t) = θ(0, t) = θ(1, t) = 0 on Σ,

ϕx (0, t) = ϕx (1, t) = θx (0, t) = θx (1, t) = 0 on Σ,

ϕ(·,T ) = ϕT (·), θ(·, 0) = 0 in (0, 1).

(4)
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Idea of the proof

Linear case: Observability (. . . Carleman estimates)



−ϕt + ϕxxxx + ϕxx = g1 + θ1Od
in Q,

θt + θxxxx + θxx = g2 − `−2ϕ1O + γ−2ϕ in Q,

ϕ(0, t) = ϕ(1, t) = θ(0, t) = θ(1, t) = 0 on Σ,

ϕx (0, t) = ϕx (1, t) = θx (0, t) = θx (1, t) = 0 on Σ,

ϕ(·,T ) = ϕT (·), θ(·, 0) = 0 in (0, 1).

(5)

Observability inequality

‖ϕ(·, 0)‖2
L2(Q)N +

x

Q

ρ1(t)|ϕ|2dxdt +
x

Q

ρ2(t)|θ|2dxdt

≤ C

(
x

Q

ρ3(t)(|g1|2 + |g2|2)dxdt +
x

ω×(0,T )

ρ4(t)|ϕ|2dxdt

)
.

ρj(t): Carleman weights, j = 1, . . . , 4.
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Theorem (L. Breton., C.M, 2021)

Assume that ω ∩ Od 6= ∅. ∀T > 0, ω ∩ O = ∅, γ, ` are large enough and δ > 0

small. ∃ ρ, ρ→ +∞, t → T such that

x

Od×(0,T )

ρ2|yd |2 < +∞ and ‖y0‖L2(0,1) ≤ δ.

Then

∃ null control h & ∃! saddle point (v̄ , ψ̄).

V.Hernández–Santamaŕıa, L de Teresa, Robust Stackelberg controllability

for linear and semilinear heat equations, Evol. Equ. Control Theory, 7(2):

247-273, 2018.

C. Montoya, L de Teresa, Robust Stackelberg controllability for the

Navier–Stokes equations. NoDEA Nonlinear Differential Equations Appli., 25(5):

Art. 46, 33, 2018.

L. Breton., C. Montoya, Robust Stackelberg controllability for the
Kuramoto–Sivashinsky Equation. Under review.
https://arxiv.org/abs/2005.13060
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Numerical experiments...robust control

Numerical scheme for the Kuramoto–Sivashinsky eq:

θ–scheme/Adams–Bashforth (time); P1–FE (space):

un+1−un

∆t
+ θA(wn+1) + (1− θ)A(wn)− 3

2
N (un) + 1

2
N (un−1) = f n+1,

wn+1 − un+1
xx = 0,

Vh = {u ∈ C([−L, L]) : u|[xj ,xj+1] ∈ P1 for all 0 ≤ j ≤ N}

and its subspace

V0h = {u ∈ Vh : u(−L) = u(L) = 0}.

Errors between exact and approximate solutions
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Example...robust control

Disturbance signals ψ (left) and control functions v (right) on the spatial domain

(−30, 30). T = 1s, N = 50,∆t = 2× 10−2. ` = 40, γ = 40 (top); ` = 40, γ = 400,

O = (−10, 10) (bottom).
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-5

-4

-3

-2

-1

0

1

10
-5

2

3

1.2
1

30
0.5

0
0 -30

Disturbance function ψ2

-1.5

-1

6

-0.5

0

0.5

10
-5

1

1.5

304
10

02
-10

0 -30

Control function v1

-2

0

1.5

2

4

10
-5

6

8

1

0.5
30

0
0

-30

-1

0

1

2

3

4

5

6

7

10
-5

Control function v2

-0.1

-0.05

0

6

0.05

0.1

0.15

0.2

4
30

2 100-10
0 -30

-0.05

0

0.05

0.1

0.15

21



Example...Robust Stackelberg controllability

Robust Stackelberg controllability: T = 3s,N = 100,∆t = 2× 10−2, ` = γ = 40.

Domains ω = (−3, 1) and O = (2, 5), initial datum u0(x) = 10−3 exp (−x2).
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Open problems

• Does it occurs the null controllability when the leader control

h is located on the boundary?

• Is it possible to consider a Nash–Stackelberg strategy instead

of Stackelberg strategy?

• Is it possible to study this scheme to other models (KdV,

micropolar fluids, Boussinesq system, . . . )?

• Efficient numerical methods for solving robust–Stackelberg

controllability problems.
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Thank you
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